全球新消息丨使用PyTorch 2.0 加速Hugging Face和TIMM库的模型

首页>焦点 > 正文
2022-12-22 16:19:33

来源:

点蓝色字关注“机器学习算法工程师”

设为星标,干货直达!


(资料图片仅供参考)

PyTorch 2.0引入了**torch.compile()**来加速模型,这篇文章我们将介绍如何使用**torch.compile()**来加速Hugging Face和TIMM库的模型。

torch.compile() 使得尝试不同的编译器后端变得容易,从而使用单行装饰器 torch.compile() 使 PyTorch 代码更快。它可以直接在 nn.Module 上工作,作为 torch.jit.script() 的直接替代品,但不需要您进行任何源代码更改。我们希望这一行代码更改能够为您已经运行的绝大多数模型提供 30%-2 倍的训练时间加速。

opt_module=torch.compile(module)

torch.compile 支持任意 PyTorch 代码、控制流、变异,并带有对动态形状的实验性支持。我们对这一发展感到非常兴奋,我们将其称为 PyTorch 2.0。

这个版本对我们来说不同的是,我们已经对一些最流行的开源 PyTorch 模型进行了基准测试,并获得了 30% 到 2 倍的大幅加速(见https://github.com/pytorch/torchdynamo/issues/681) 。

这里没有技巧,我们已经 pip 安装了流行的库,比如https://github.com/huggingface/transformers, https://github.com/huggingface/accelerate 和 https://github.com/rwightman/pytorch-image-models等流行的库,然后对它们运行 torch.compile() 就可以了。

很难同时获得性能和便利性,但这就是核心团队发现 PyTorch 2.0 如此令人兴奋的原因。Hugging Face 团队也很兴奋,用他们的话说:

TIMM 的主要维护者 Ross Wightman:“PT 2.0 开箱即用,适用于推理和训练工作负载的大多数 timm 模型,无需更改代码。”

Sylvain Gugger 是 transformers 和 accelerate 的主要维护者:“只需添加一行代码,PyTorch 2.0 就可以在训练 Transformers 模型时提供 1.5 到 2.x 的加速。这是引入混合精度训练以来最激动人心的事情!”

本教程将向您展示如何使用这些加速,这样您就可以像我们一样对 PyTorch 2.0 感到兴奋。

安装教程

对于 GPU(新一代 GPU 的性能会大大提高):

pip3installnumpy--pretorch--force-reinstall--extra-index-urlhttps://download.pytorch.org/whl/nightly/cu117

对于CPU:

pip3install--pretorch--extra-index-urlhttps://download.pytorch.org/whl/nightly/cpu

当安装好后,你可以通过以下方式来进行验证:

gitclonehttps://github.com/pytorch/pytorchcdtools/dynamopythonverify_dynamo.py

另外一种安装方式是采用docker,我们还在 PyTorch nightly 二进制文件中提供了所有必需的依赖项,您可以使用它们下载:

dockerpullghcr.io/pytorch/pytorch-nightly

对于临时实验,只需确保您的容器可以访问所有 GPU:

dockerrun--gpusall-itghcr.io/pytorch/pytorch-nightly:latest/bin/bash

使用教程

让我们从一个简单的例子开始,一步步把事情复杂化。请注意,您的 GPU 越新,您可能会看到更显着的加速。

importtorchdeffn(x,y):a=torch.sin(x).cuda()b=torch.sin(y).cuda()returna+bnew_fn=torch.compile(fn,backend="inductor")input_tensor=torch.randn(10000).to(device="cuda:0")a=new_fn()

这个例子实际上不会运行得更快,但它具有教育意义。

以 torch.cos() 和 torch.sin() 为特色的示例,它们是逐点操作的示例,因为它们在向量上逐个元素地进行操作。你可能真正想要使用的一个更著名的逐点运算是类似 torch.relu() 的东西。eager模式下的逐点操作不是最优的,因为每个操作都需要从内存中读取一个张量,进行一些更改,然后写回这些更改。

PyTorch 2.0 为您所做的最重要的优化是融合。

回到我们的示例,我们可以将 2 次读取和 2 次写入变成 1 次读取和 1 次写入,这对于较新的 GPU 来说尤其重要,因为瓶颈是内存带宽(您可以多快地向 GPU 发送数据)而不是计算(您的速度有多快) GPU 可以处理浮点运算)。

PyTorch 2.0 为您做的第二个最重要的优化是 CUDA graphs。CUDA graphs有助于消除从 python 程序启动单个内核的开销。

torch.compile() 支持许多不同的后端,但我们特别兴奋的一个是生成 Triton 内核(https://github.com/openai/triton,用 Python 编写的,但性能优于绝大多数手写的 CUDA 内核)的 Inductor。假设我们上面的示例名为 trig.py,我们实际上可以通过运行来检查代码生成的 triton 内核:

TORCHINDUCTOR_TRACE=1pythontrig.py

@pointwise(size_hints=[16384],filename=__file__,meta={"signature":{0:"*fp32",1:"*fp32",2:"i32"},"device":0,"constants":{},"configs":[instance_descriptor(divisible_by_16=(0,1,2),equal_to_1=())]})@triton.jitdefkernel(in_ptr0,out_ptr0,xnumel,XBLOCK:tl.constexpr):xnumel=10000xoffset=tl.program_id(0)*XBLOCKxindex=xoffset+tl.reshape(tl.arange(0,XBLOCK),[XBLOCK])xmask=xindex

你可以验证融合这两个 sins 确实发生了,因为这两个 sin 操作发生在一个单一的 Triton 内核中,并且临时变量保存在寄存器中,可以非常快速地访问。

下一步,让我们尝试一个真实的模型,比如来自 PyTorch hub 的 resnet50。

importtorchmodel=torch.hub.load("pytorch/vision:v0.10.0","resnet18",pretrained=True)opt_model=torch.compile(model,backend="inductor")model(torch.randn(1,3,64,64))

如果您实际运行,您可能会惊讶于第一次运行很慢,那是因为正在编译模型。后续运行会更快,因此在开始对模型进行基准测试之前预热模型是常见的做法。

您可能已经注意到我们如何在此处使用“inductor”显式传递编译器的名称,但它不是唯一可用的后端,您可以在 torch._dynamo.list_backends() 中运行以查看可用后端的完整列表。为了好玩,您应该尝试 aot_cudagraphs 或 nvfuser。

现在让我们做一些更有趣的事情,我们的社区经常使用来自 transformers (https://github.com/huggingface/transformers) 或 TIMM (https://github.com/rwightman/pytorch-image-models)的预训练模型和我们的设计之一PyTorch 2.0 的目标是任何新的编译器堆栈都需要开箱即用,可以与人们实际运行的绝大多数模型一起工作。因此,我们将直接从 Hugging Face hub 下载预训练模型并对其进行优化。

importtorchfromtransformersimportBertTokenizer,BertModel#Copypastedfromherehttps://huggingface.co/bert-base-uncasedtokenizer=BertTokenizer.from_pretrained("bert-base-uncased")model=BertModel.from_pretrained("bert-base-uncased").to(device="cuda:0")model=torch.compile(model)#Thisistheonlylineofcodethatwechangedtext="Replacemebyanytextyou"dlike."encoded_input=tokenizer(text,return_tensors="pt").to(device="cuda:0")output=model(**encoded_input)

如果您从模型和 encoded_input 中删除 to(device="cuda:0") ,那么 PyTorch 2.0 将生成 C++ 内核,这些内核将针对在您的 CPU 上运行进行优化。你可以检查 Triton 或 C++ 内核的 BERT,它们显然比我们上面的三角函数示例更复杂,但如果你了解 PyTorch,你也可以类似地浏览它并理解。

相同的代码也可以https://github.com/huggingface/accelerate 和 DDP 一起使用。

同样让我们尝试一个 TIMM 示例:

importtimmimporttorchmodel=timm.create_model("resnext101_32x8d",pretrained=True,num_classes=2)opt_model=torch.compile(model,backend="inductor")opt_model(torch.randn(64,3,7,7))

我们使用 PyTorch 的目标是构建一个广度优先的编译器,该编译器将加速人们在开源中运行的绝大多数实际模型。Hugging Face Hub 最终成为我们非常有价值的基准测试工具,确保我们所做的任何优化实际上都有助于加速人们想要运行的模型。

本文翻译自https://pytorch.org/blog/Accelerating-Hugging-Face-and-TIMM-models/

标签:

THE END
免责声明:本文系转载,版权归原作者所有;旨在传递信息,不代表热讯制鞋网的观点和立场。

相关热点

新华社电 上海市文化和旅游局近日发布《上海市密室剧本杀内容备案管理规定(征求意见稿)》,并截至12月8日面向社会公众广泛征求意见。这
2021-11-19 13:46:03
《中国证券报》17日刊发文章《备战2022 基金经理调仓换股布新局》。文章称,距离2021年结束仅剩一个多月,基金业绩分化明显。部分排名靠前
2021-11-19 13:46:03
交通运输部办公厅 中国人民银行办公厅 中国银行保险监督管理委员会办公厅关于进一步做好货车ETC发行服务有关工作的通知各省、自治区、直
2021-11-19 13:45:58
新华社北京11月17日电 题:从10月份市场供需积极变化看中国经济韧性新华社记者魏玉坤、丁乐读懂中国经济,一个直观的视角就是市场供需两端
2021-11-19 13:45:58
全国教育财务工作会议披露的消息称,2020年,中国国家财政性教育经费投入达4 29万亿元,占GDP总量的4 206%,我国国家财政性教育经费支出占G
2021-11-19 13:45:48
如果你也热爱“种草”,前方高能预警!让你心心念念、“浏览”忘返的网络平台,可能早已成为一块块“韭菜地”。近日,据《半月谈》报道,有...
2021-11-19 13:45:48
日前,工业和信息化部印发《“十四五”信息通信行业发展规划》(以下简称《规划》),描绘了未来5年信息通信行业的发展趋势。《规划》指出...
2021-11-19 13:45:40
本报讯(中青报·中青网记者 周围围)2021年快递业务旺季正式拉开帷幕。国家邮政局监测数据显示,仅11月1日当日,全国共揽收快递包裹5 69
2021-11-19 13:45:40
人民网曼谷11月17日电 (记者赵益普)17日上午,中国援柬埔寨第七批200万剂科兴新冠疫苗抵达金边国际机场。当天,柬埔寨政府在机场举行了
2021-11-19 13:45:35
金坛压缩空气储能国家试验示范项目主体工程一角受访者供图依托清华大学非补燃压缩空气储能技术,金坛压缩空气储能项目申请专利百余项,建立
2021-11-19 13:45:35
视觉中国供图42亿立方米据有关部门预计,今年山西煤炭产量有望突破12亿吨,12月份山西外送电能力将超过900万千瓦,今冬明春煤层气产量将达4
2021-11-19 13:44:34
14省份相继发布2021年企业工资指导线——引导企业合理提高职工工资今年以来,天津、新疆、内蒙古、陕西、西藏、山东、江西、山西、福建、四
2021-11-19 13:44:34
中新网客户端北京11月18日电 (记者 谢艺观)“一条路海角天涯,两颗心相依相伴,风吹不走誓言,雨打不湿浪漫,意济苍生苦与痛,情牵天下喜
2021-11-19 13:44:31
近日,交通运输部等三部门发布《关于进一步做好货车ETC发行服务有关工作的通知》。通知提到,对不具备授信条件的用户,商业银行可在依法合
2021-11-19 13:44:31
欧莱雅面膜陷优惠“年度最大”风波 涉及该事件集体投诉超6000人次美妆大牌双十一促销翻车?近日,因预售价格比双十一现货贵出66%,欧莱雅
2021-11-19 13:44:13
43 6%受访者会在工作两三年后考虑跳槽54 3%受访者认为跳槽对个人职业发展有利有弊如今对不少年轻人来说,想对一份工作“从一而终”不太容易
2021-11-19 13:44:13
超八成受访青年表示如有机会愿意开展副业 规划能力最重要64 4%受访青年指出做副业跟风心态最要不得如今,“身兼数职”已成为年轻人当中的
2021-11-19 13:44:01
发展氢能正当其时【科学随笔】氢能是一种二次能源,它通过一定的方法利用其他能源制取,具有清洁无污染、可储存、与多种能源便捷转换等优点
2021-11-19 13:44:01
“千杯不醉”的解酒“神药”能信吗?专家:网红“解酒药” 其实不算药俗话说,“酒逢知己千杯少”,酒一直是国人饭桌上至关重要的存在。尽...
2021-11-19 13:43:57
最新文章

相关推荐